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Abstract
Genome-wide association studies (GWAS) evaluate associations between genetic variants

and a trait or disease of interest free of prior biological hypotheses. GWAS require stringent

correction for multiple testing, with genome-wide significance typically defined as associa-

tion p-value <5*10−8. This study presents a new tool that uses external information about

genes to prioritizeSNP associations (GenToS). For a given list of candidate genes, Gen-

ToS calculates an appropriate statistical significance threshold and then searches for trait-

associated variants in summary statistics from humanGWAS. It thereby allows for identify-

ing trait-associated genetic variants that do not meet genome-wide significance. The pro-

gram additionally tests for enrichment of significant candidate gene associations in the

humanGWAS data compared to the number expected by chance. As proof of principle, this

report used external information from a comprehensive resource of genetically manipulated

and systematically phenotypedmice. Based on selected murine phenotypes for which

humanGWAS data for corresponding traits were publicly available, several candidate gene

input lists were derived. Using GenToS for the investigation of candidate genes underlying

murine skeletal phenotypes in data from a large human discovery GWAS meta-analysis of

bonemineral density resulted in the identification of significantly associated variants in 29

genes. Index variants in 28 of these loci were subsequently replicated in an independent

GWAS replication step, highlighting that they are true positive associations. One signal,

COL11A1, has not been discovered throughGWAS so far and represents a novel human

candidate gene for altered bone mineral density. The number of observed genes that con-

tained significant SNP associations in humanGWAS based on murine candidate gene

input lists was much greater than the number expected by chance across several complex

human traits (enrichment p-value as low as 10−10). GenToS can be used with any candidate

gene list, any GWAS summary file, runs on a desktop computer and is freely available.
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Introduction
Genome-wide association studies (GWAS) are an unbiased approach to identify genomic risk
loci for complex diseases and to gain insight into underlying pathogenic mechanisms. Over the
past decade, GWAS have led to the identification of previously unknown risk loci for hundreds
of traits and diseases [1,2]. To reduce the type I error and account for association testing of an
estimated one million common independent single nucleotide polymorphisms (SNPs) in the
human genome [3], a multiple testing corrected significance level (alpha of 5�10−8 [0.05/
1,000,000]) has been adopted in the GWAS community. This rather conservative Bonferroni
correction results in an increased type II error: increasingly larger GWAS meta-analyses of the
same phenotype have demonstrated that results for a given GWAS meta-analysis contain mul-
tiple true positive findings that do not achieve genome-wide significant association p-values.
Such associations can then only be identified and replicated at genome-wide significance once
sample size is increased in subsequent analyses. However, increasing sample size may not
always be feasible due to high costs or because of limited phenotype availability for specific dis-
eases or special populations [4]. Therefore, approaches to identify additional candidate genes
among these suggestive but not genome-wide significantly associated loci are needed.
Another challenge in the interpretation of associated loci identified through GWAS is that

these loci typically contain several or many genes that each contain associated genetic variants
in high linkage disequilibrium, complicating the identification of the causal gene(s) and variant
(s) within such loci [5]. Again, additional sources of evidence to aid in the prioritization of
association signals would be desirable. Several existing approaches leverage external informa-
tion for the prioritization of potentially causal genes from GWAS data [6–12]. Many of these
previous approaches evaluate enrichment of associated SNPs in gene sets based on pre-defined
pathways [13], gene ontology terms [14], tissue expression analysis or functionally similar
genes. They integrate information across different cell types and organisms and from sources
as heterogeneous as in vitro protein-protein and chemical interactions. Another external
source of information is animal models of phenotypes analogous to the human phenotype of
interest, because of the conservation of gene function across species. The mouse represents a
suitable model organism because of the relatively short evolutionary distance between humans
and mice and because of a comprehensive and systematic effort to generate knock-out animals
and/or cells for all murine genes [15,16]. Previous approaches that have integrated evidence
from GWAS and mouse models have focused on evidence from naturally occurring genetic
markers for subsequent use in linkage analysis [17] or genome-wide association testing [18].
We aimed to develop a method that provides complementary information to previous

approaches by using a comprehensive resource of geneticallymanipulated and then systemati-
cally phenotypedmice (reverse genetics approach) in order to generate biological candidate
gene lists. These genes are then evaluated using summary association statistics from GWAS of
a corresponding human disease or phenotype.We validate the method across several human
complex traits and diseases including bone mineral density, diabetes, glycemic traits and blood
pressure phenotypes, and show that genes causing a specific phenotype in mouse models are
significantly enriched for associated SNPs in results from GWAS of a corresponding human
phenotype. Finally, we show that the method can identify novel candidate genes not claimed
by GWAS so far for future validation.

Results
The GenToS algorithm is built as a three-step procedure. It requires a candidate gene input list
that contains gene identifiers of human orthologs of genes causing a specific phenotype in
geneticallymanipulated mice. In a first step, the corresponding genomic coordinates for each
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gene on the candidate gene input list are obtained (Fig 1A). Next, the number of independent
common single nucleotide polymorphisms (SNPs) within each candidate gene region is deter-
mined based on a reference population, to subsequently calculate a statistical significance
threshold based on the number of independent SNPs across all genes on a list (Fig 1B). Third,
all derived gene regions are queried for the presence of SNPs with association p-values below
the derived significance threshold in results from a human GWAS of the same or similar phe-
notype (Fig 1C). In addition to this three-step procedure, a validation step can be performed to
examine whether the use of the candidate gene input list leads to the identification of more
genes that contain significant associations than expected by chance (enrichment, Fig 1D).
Detailed information is provided in the Methods section.

Enrichment of the number of genes with significant association signals
based on a candidate gene input list
Enrichment of significant GWAS associations based on a candidate gene input list can be
assessed compared to the null distribution of significant GWAS associations expected by
chance. The null distribution can be derived by a resampling approach where each randomly
drawn gene input list contains an equal number of genes as the candidate gene input list. Since
this iterative procedure is time consuming, we assessed the properties of this distribution. The
test of identifying SNPs below the significance threshold for a given gene can be considered a
Bernoulli trial. Thus, the number of genes that contain significant GWAS association signals
from an input gene list should follow a binomial distribution.
First, 2,000 iterations of GenToS were carried out for each of several fixed statistical signifi-

cance thresholds (range 1�10−2 to 1�10−8). For every threshold, each of the 2,000 iterations
used an input gene list that contained 1,292 randomly drawn genes, corresponding to the num-
ber of genes on the candidate gene input list for abnormal murine skeleton morphology (see
next section). The human GWAS summary statistics dataset used to identify significantly asso-
ciated SNPs was obtained from a meta-analysis of GWAS for bone mineral density (for details,
seeMethods). For each of the 2,000 iterations, the number of genes from each input list was
counted that contained SNPs associated with bone mineral density below the respective signifi-
cance threshold.
Next, 2,000 iterations of a binomial experiment were carried out to simulate a binomial dis-

tribution. In each of these, p was the probability of observing a significant gene association,
estimated by the proportion of genes that contained significant SNP associations below the
evaluated fixed significance threshold among all 25,230 entries in the human gene database,
and the number of Bernoulli trials n was 1,292, the number of genes in the candidate gene list.
After 2,000 iterations of the simulated random draw, the number of significant genes was plot-
ted against the number obtained from the iterative random draw using quantile-quantile
(QQ)-plots. Fig 2 shows good agreement of the number of significant genes detected by the
two approaches across a range of selected significance thresholds. The QQ plots for all evalu-
ated significance thresholds are shown in S1 Fig for input gene lists that contain as many genes
as the abnormal skeleton morphology candidate gene list (the longest candidate gene list) and
in S2 Fig for input gene lists that contained 134 genes as the abnormal bone mineralization list
(the shortest candidate gene list). Spearman rank-correlation coefficients between the number
of significant genes for the two approaches ranged from 0.90–1.00 across all QQ plots. We
therefore decided to subsequently use the binomial distribution to visually assess and quantify
enrichment of human GWAS association signals based on candidate gene input lists. Enrich-
ment p-values were estimated using a complementary cumulative binomial distribution (see
Methods).
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Fig 1. GenToS principle. (A) First, GenToS extracts for each gene on a given candidate gene input list the
region of the gene including a user-defined flanking region. (B)Next, all independent SNPs within each
region are identified from a reference population, and a significance threshold based on the number of
independent SNPs is calculated. (C) In the final step, SNPs with an association p-value below the calculated
significance threshold are extracted from the humanGWAS summary results. (D)Enrichmentof the number
of observed significant genes (vertical line) can be assessed visually compared to the expected number
based on a null distribution derived by resampling from a binomial distribution (histogram).

doi:10.1371/journal.pone.0162466.g001
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GWAS of human skeletal phenotypes are enriched for signals in genes
causing bone phenotypes in mousemodels
Using publicly available summary statistics from the discovery stage of GWAS meta-analyses
for femoral neck bone mineral density (FNBMD) and lumbar spine bone mineral density
(LSBMD) of the GEFOS Consortium [19,20], GenToS was used to test for enrichment of
GWAS association signals in genes that give rise to six different skeletal phenotypes in mouse
models. Depending on which of the six candidate gene input lists was used (seeMethods), a

Fig 2. QQ-plotsof the number of observedsignificantgenesunder the null hypothesis comparing randomdraws of gene
input lists and simulated draws. The graph shows that simulated draws based on a binomial experiment approximate the number
of significant genes under the null hypothesis derived from iterations of randomly generated input gene lists, while being
computationally more efficient.QQ plots were generated across a range of possible significance thresholds. Spearmancorrelation
coefficients were determined for each setting and found to be in the range of 0.90–1.00.

doi:10.1371/journal.pone.0162466.g002
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range of 6–21 significant genes were identified in human GWAS based on the Bonferroni
method to derive the significance threshold (seeMethods). The number of significant genes
was higher than that expected by chance for each candidate gene input list, with enrichment p-
values ranging from 2.62�10−3 to 1.71�10−10 depending on the human phenotype (FNBMD or
LSBMD) and the mouse candidate gene input list. Fig 3 shows the observednumber of genes
that contained significant associations compared to 2,000 randomly drawn input gene lists that
contained an equal number of genes as the candidate gene input list, as well as the enrichment
p-values for each of the six evaluated candidate gene input lists in relation to FNBMD. Results
were also significant and very similar for LSBMD (S3 Fig).
Across all six candidate gene input lists and the two human phenotypes, 29 unique genes

contained significantly associated SNPs (Tables 1 and 2). The greatest number of genes, 21,
was found in association with FNBMD using the longest and rather general candidate gene
input list, “abnormal skeleton morphology” (enrichment p-value of 1.71�10−10, Fig 3).

GenToS identifies novel gene associations for human skeletal phenotypes
Of the 29 genes that contained SNPs significantly associated with human skeletal phenotypes,
20 were published as genome-wide significant loci by the GEFOS Consortium (Table 1)
[19,20]. Of these, only 12 had reached genome-wide significance during the GWAS discovery
stage, which is used for GenToS, whereas eight additional genes only achieved genome-wide
significance after the replication stage of the study. Further, seven of the 29 genes mapped into
significant and subsequently replicated GEFOS loci, but had not been named as the gene
underlying the association signal in a given locus (Table 2 and S4 Fig). The remaining genes
identified by GenToS had not reached genome-wide significance after discovery and replica-
tion at the time of the GEFOS publication. One of them, FGFRL1, was later identified in a bone
mineral density study by Zhang et al [21]. The last gene, COL11A1, has not been identified by
bone-related GWAS to date and thus represents a novel human candidate gene for altered
bonemineral density. Altogether, index SNPs in 28 of 29—or>95% of significant genes identi-
fied using GenToS with the GEFOS discovery stage data—were subsequently replicated, sup-
porting them as true association signals. Among the genes not previously identified through
GWAS or not implicated as the index gene in an associated locus, LRP4 and COL11A1 are
known to harbor rare mutations that cause monogenic skeletal disease in humans (Table 2).
Thus, additional evidence like Cenani-Lenz syndactylyl syndrome or fibrochondrogenesis-1
and the association between the index SNP in LRP4 and LRP4 transcript abundance strongly
support that the genes identified using GenToS may be the causal one or represent an addi-
tional phenotype-associated gene in an associated locus (Table 1).

Significant associations with additional human phenotypes
To assess whether the enrichment of GWAS signals for genes causing corresponding or related
phenotypes in mouse models can be generalized to phenotypes other than human bone min-
eral density, we explored additional human traits for which GWAS summary statistics are pub-
licly available. This evaluation showed the GenToS approach to be generalizable (Table 3), but
that the observed enrichment varied depending on the human phenotype and the input candi-
date gene list.
For type 2 diabetes, studied in 57,000 participants of the DIAGRAM Consortium [22],

enrichment of genes that contained significantly associated SNPs was observed for two of the
candidate gene input lists (S5 Fig): for the list of candidate genes that whenmodified cause
“hyperglycemia” in mouse models, five significant genes were identified in the DIAGRAM data
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Fig 3. GenToS identifiessignificant enrichment of genes containing femoral neck bonemineral
density-associated SNPs based on candidate gene input lists for murine bone phenotypes. For each
of the six candidate gene input lists, the number of expected significant genes under the null hypothesis was
generated based on iterations of randomly drawn gene lists that contained an equal number of genes as the
respective candidate gene input list and is displayed as a histogram. In addition, the binomial density
distribution corresponding to the candidate gene input list significance thresholdwas overlaid (dots
connectedwith lines). The observed number of significant genes based on the use of GenTos with the
candidate gene input lists and the humanGWAS results for femoral neck bonemineral density is indicated by
a vertical black line. The enrichment p-value is computed from the complementary cumulative binomial
distribution (seeMethods).

doi:10.1371/journal.pone.0162466.g003
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Table 1. Genes identified by GenToS in association with humanbonemineral density phenotypes that reached genome-wide significanceand
were replicated in previous GWAS.

Gene Cyto-band index SNP,
FNBMD

p-value,
FNBMD

index SNP,
LSBMD

p-value,
LSBMD

in GWAS Catalog* OMIM
number

monogenic phenotype

WLS 1p31.3 rs1430742 2.91E-13 rs878548 1.52E-19 Estrada K, rs12407028-T, 3 x
10–45 (LSBMD)

SPTBN1 2p16.2 rs11898505 9.72E-12 Estrada K, rs4233949-C, 2 x
10–18 (LSBMD)

PKDCC 2q21 rs13005448 7.99E-07 Estrada K, rs7584262-T, 1 x
10–9 (FNBMD)

GALNT3 2q24.3 rs1346004 1.62E-10 rs1346004 4.44E-08 Estrada K, rs1346004-A, 4 x
10–30 (LSBMD); Duncan EL,
rs6710518-T, 5 x 10–10
(femoral neck)

211900 Tumoral calcinosis,
hyperphosphatemic, familial

IDUA 4p16.3 rs3755955 3.73E-07 Estrada K, rs3755955-A, 5 x
10–15 (LSBMD)

607014;
607015;
607016

Mucopolysaccharidosis Ih;
Mucopolysaccharidosis Ih/s;
Mucopolysaccharidosis Is

MEPE 4q22.1 rs1054629 9.23E-10 rs1471403 1.67E-10 Estrada K, rs6532023-T, 1 x
10–27 (LSBMD); Zhang L,
rs1463104-?, 2 x 10–9 (spine)

MEF2C 5q14.3 rs17558396 6.54E-07 Estrada K, rs1366594-A, 4 x
10–61 (FNBMD); Zhang L,
rs6894139-?, 7 x 10–18
(FNK); Zheng HF,
rs11951031-T, 9 x 10–9;
Duncan EL, rs6710518-T, 8 x
10–10 (femoral neck)

613443;
613443

Chromosome 5q14.3 deletion
syndrome;Mental retardation,
stereotypic movements, epilepsy,
and/or cerebral malformations

ESR1 6q25.1 rs3020331 1.30E-14 rs2941741 1.19E-14 Estrada K, rs4869742-T, 4 x
10–35 (LSBMD); Paternoster
L, rs6909279-G, 1 x 10–9
(Cortical vBMD)

615363;
114480;
157300;
608446

Estrogen resistance; {Breast cancer};
{Migraine, susceptibility to};
{Myocardial infarction, susceptibility
to}; {Breast cancer} (no OMIM);
{Migraine, susceptibility to} (no OMIM)

WNT16 7q31.31 rs3801387 4.67E-14 rs3801387 1.58E-15 Estrada K, rs3801387-A, 3 x
10–51 (LSBMD); Zhang L,
rs10242100-?, 2 x 10–10 (hip)

TNFRSF11B 8q24.12 rs4242592 1.58E-14 rs10505348 3.22E-18 Estrada K, rs2062377-A, 3 x
10–39 (LSBMD); Zhang L,
rs4424296-?, 9 x 10–14
(spine); Richards JB,
rs4355801-A, 8 x 10–10;
Paternoster L, rs2062377-A,
1 x 10–7 (Cortical vBMD)

239000 Paget disease of bone 5, juvenile-
onset

ARHGAP1 11p11.2 rs7932354 2.62E-08 Estrada K, rs7932354-T, 5 x
10–18 (FNBMD)

SOX6 11p15.2-p15.1 rs4757390 3.94E-07 Estrada K, rs7108738-T, 1 x
10–32 (FNBMD); Zhang L,
rs7108738-?, 1 x 10–15
(FNK)

LRP5 11q13.2 rs608343 5.77E-07 rs3736228 1.32E-10 Estrada K, rs3736228-T, 2 x
10–26 (LSBMD); Richards
JB, rs3736228-T, 6 x 10–12;
Zhang L, rs525592-?, 3 x 10–
11 (spine)

601813;
144750;
607634;
259770;
144750;
607636;
601884;
166710

Exudative vitreoretinopathy 4;
Hyperostosis, endosteal;
Osteopetrosis, autosomal dominant 1;
Osteoporosis-pseudoglioma
syndrome; Osteosclerosis; van
Buchem disease, type 2; [Bone
mineral density variability 1];
{Osteoporosis}

HOXC6 12q13.13 rs10876528 1.23E-07 rs894737 6.38E-10 Estrada K, rs736825-C, 8 x
10–16 (LSBMD)

SP7 12q13.13 rs2016266 5.44E-07 rs2016266 3.97E-12 Estrada K, rs2016266-A, 3 x
10–20 (LSBMD)

613849 ?Osteogenesis imperfecta, type XII

AXIN1 16p13.3 rs9921222 2.22E-07 rs9921222 7.26E-08 Estrada K, rs9921222-T, 1 x
10–16 (LSBMD)

607864;
114550

?Caudal duplication anomaly;
Hepatocellular carcinoma, somatic

CLCN7 16p13.3 rs13336428 2.55E-07 Estrada K, rs13336428-A, 1 x
10–16 (FNBMD)

166600;
611490

Osteopetrosis, autosomal dominant 2;
Osteopetrosis, autosomal recessive 4

(Continued)
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(enrichment p-value 3.11�10−5, S1 Table). For the candidate gene list “abnormal glucose toler-
ance”, seven significant genes were found (enrichment p-value 6.54�10−6, S1 Table).
For systolic blood pressure, human GWAS summary data from the ICBP Consortiumwas

used (n = 74,000 [23,24]), and 4 different candidate gene input lists were tested (seeMethods).
None of the tested candidate gene lists showed nominally significant enrichment for associa-
tion signals in humans (S6 Fig, S1 Table), although the number of genes with significant associ-
ation signals in the lists “increased systemic arterial blood pressure” and “decreased systemic
arterial blood pressure” approached statistical significance.
Finally, glycemic traits studied in theMAGIC Consortiumwere evaluated. For association

with the human trait fasting insulin concentrations (GWAS data based on 38,000 individuals
[25]), six different candidate gene input lists ranging from 42 to 385 genes were evaluated (see
Methods). Nominally significant enrichment of associated genes was identified for two candidate
gene lists (S7 Fig), “abnormal circulating insulin level” (enrichment p-value 3.21�10−2) and
“increased circulating insulin level” (enrichment p-value 2.05�10−2, with associated genes listed in
S1 Table. All other candidate gene lists did not give rise to any significant association signals in
humans. The other human trait evaluated was fasting glucose (GWAS data for 46,000 individuals
[25]). Six different candidate gene input lists were evaluated, representing three mouse traits, each
in the fasting and non-fasting state. Significant enrichment of the number of genes that contained
association signals in humans was only observed for the non-fasting candidate gene input lists
(S8 Fig): 6 significant genes were identified for “abnormal circulating glucose level” (enrichment
p-value 5.12�10−4), 3 for”decreased circulating glucose level” (enrichment p-value 2.49�10−2), and
6 for”increased circulating glucose level (enrichment p-value 2.41�10−5), with associated genes
shown in S1 Table. Conversely, no enrichment and in fact no significant genes at all were identi-
fied for the candidate gene input lists from the fasting counterpart of the murine phenotype.

Discussion
In this study we introducedGenToS, a tool to prioritize genes from GWAS summary statistics
using candidate gene information obtained from another species, the mouse.We show across a

Table 1. (Continued)

Gene Cyto-band index SNP,
FNBMD

p-value,
FNBMD

index SNP,
LSBMD

p-value,
LSBMD

in GWAS Catalog* OMIM
number

monogenic phenotype

SOST 17q21.31 rs2741856 5.10E-08 rs2741856 1.29E-07 Estrada K, rs4792909-T, 2 x
10–11 (FNBMD)

122860;
269500;
239100

Craniodiaphyseal dysplasia,
autosomal dominant; Sclerosteosis 1;
Van Buchem disease

TNFRSF11A 18q21.33 rs884205 2.62E-08 Estrada K, rs884205-A, 2 x
10–17 (LSBMD)

174810;
612301;
602080

Osteolysis, familial expansile;
Osteopetrosis, autosomal recessive
7; {Paget disease of bone 2, early-
onset}

JAG1 20p12.2 rs6514116 8.88E-08 rs6040061 9.23E-10 Estrada K, rs3790160-T, 3 x
10–19 (LSBMD); Kung AW,
rs2273061-A, 5 x 10–8

118450;
187500

Alagille syndrome; Tetralogy of Fallot;
Deafness, congenital heart defects,
and posterior embryotoxon (non
OMIM)

The index SNP is defined as the SNP with the lowest association p-value with a given trait. The GWAS Catalog entry refers to results obtained from the

NHGRI GWAS catalog upon entry of the given index SNP. Monogenic phenotypes are retrieved fromOMIM.Of note, several of these genes only achieved

genome-wide significance after the replication step, whereasGenToS is based on data from the discovery step and already implicated the genes at this

point. Empty cells for LSBMD andMNBMDp-values and SNP identifiers indicate that no SNP in the gene contained significant associations below any of the

six murine candidate gene list-wise thresholds.

*LSBMD and FNBMD entries from the GWAS catalog represent summary estimates from the combined discovery and replication step.

LSBMD = Lumber spine bonemineral density; FNBMD= Femoral neck bonemineral density; OMIM= OnlineMendelian Inheritance in Man database

doi:10.1371/journal.pone.0162466.t001
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Table 2. Newly implicated genes identifiedby GenToS in associationwith bonemineral density phenotypes. These genes eithermapped into known
associatedGWAS regions but were not previously named as the index gene, or were not replicated at genome-wide significance at the time the GWAS data
was published.

Gene Cyto-
band

index SNP,
FNBMD

p-value,
FNBMD

index SNP,
LSBMD

p-value,
LSBMD

in GWAS
Catalog*

Info OMIM
number

mongenic phenotype Additional
annotation
information based
on SniPA

COL11A1 1p21.1 rs11809524 1.41E-06 Estrada K,
rs11809524-T,
9 x 10–6
(FNBMD)

228520;
154780;
604841;
603932

Fibrochondrogenesis 1;
Marshall syndrome; Stickler
syndrome, type II; {Lumbar
disc herniation, susceptibility
to}

IBSP 4q22.1 rs1054629 9.228E-10 rs17711209 1.42E-06 Duncan EL,
rs1054627-G,
8 x 10–7
(femoral neck)

proximity to
MEPE
(Estrada
et al.)

IBSPmissense
variant (transcript
1, FNBMD); Cis-
eQTL for IBSP and
other genes,
various tissues
(transcript 2,
FNMBD); Cis-
eQTL for other
genes (LSBMD)

LRP4 11p11.2 rs6485702 2.605E-07 proximity to
ARHGAP1
(Estrada
et al.)

616304;
212780;
614305

?Myasthenic syndrome,
congenital, 17; Cenani-Lenz
syndactyly syndrome
Sclerosteosis 2

LRP4missense
variant (transcript
1); Cis-eQTL for
LRP4 and other
genes, various
tissues (transcript
2)

F2 11p11.2 rs2070852 3.164E-08 proximity to
ARHGAP1
(Estrada
et al.)

613679;
613679;
188050;
614390;
601367

Dysprothrombinemia;
Hypoprothrombinemia;
Thrombophilia due to
thrombin defect; {Pregnancy
loss, recurrent, susceptibility
to, 2}; {Stroke, ischemic,
susceptibility to}

Cis-eQTL for
LRP4, ARHGAP1,
and other genes;
Splice site region
of F2 in various
transcripts;
Noncoding exon
variant in one
transcript

FGFRL1 4p16.3 rs6827815 3.966E-06 rs6827815 3.13E-06 Zhang L,
rs6827815, 5 x
10–12

upstream gene
variant; Putative
effect on
regulation; Cis-
eQTL for different
genes

HOXC10 12q13.13 rs11614913 6.981E-08 rs11614913 8.92E-10 proximity to
HOXC6
(Estrada
et al.)

Cis-eQTL for
HOXC6, HOXC8
and other genes;
Putative effect on
regulation for
HOXC10, HOXC6,
HOXC9 and other
genes

HOXC4 12q13.13 rs10876528 1.226E-07 rs894737 6.38E-10 proximity to
HOXC6
(Estrada
et al.)

Cis-eQTL for
HOXC6, HOXC8
and other genes
(FNBMD); Putative
effect on regulation
for HOXC4,
HOXC6 and other
genes (FNBMD);
Cis-eQTL for
HOXC6, HOXC8
and other genes
(LSBMD); Putative
effect on transcript
HOXC4, HOXC6
and other genes
(LSBMD)

(Continued)
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variety of complex diseases/traits that GenToS identifies significant enrichment of GWAS asso-
ciation signals in the human orthologs of these candidate genes. The potential of the method is
illustrated by the fact that—using bone phenotypes as exemplary data—more than 95% of the
genes identified by GenToS were replicated as true positives in a replication step or subsequent
studies. Our findings underline the high functional conservation of genes betweenmice and
humans and suggest that the incorporation of murine data can be particularly helpful when
further increases in sample size for human GWAS cannot easily be achieved.
There are several other tools to prioritize potentially causal genes in associated loci originat-

ing from human GWAS [6,11,12,26–28]. An approach taken by programs like DEPICT [11],
MAGENTA [28] INRICH [27] and PARIS [12] is to evaluate enrichment of associated SNPs in
gene sets based on pathways, tissue expression analysis or functionally similar genes. These
gene sets are typically based on pre-existing Gene Ontology terms [14] or KEGG pathways
[13], which integrate information across different cell types and organisms and from sources as
heterogeneous as in vitro protein-protein and chemical interactions. GenToS on the other
hand uses gene sets composed of biological candidate genes based on the systematic generation
and grouping of observedphenotypes in the mouse, a widely usedmodel organism to study
human disease. Thus, pathway-based analyses and the approach implemented in GenToS pro-
vide complementary information.
With respect to using mouse models as the primary source of information for the selection

of candidate genes, our approach is complementary to a recently published method by Wang
et al. [18]. The approach by Wang et al used naturally occurring genetic variants in recombi-
nant inbred mouse strains for association testing with multiple murine (endo-) phenotypes,
followed by examination of selected, implicated genes across many phenotypes in a human
population genotyped only for the coding portion of the genome (exome chip). Our approach
on the other hand uses geneticallymanipulated mice that feature a specific phenotype, followed

Table 2. (Continued)

Gene Cyto-
band

index SNP,
FNBMD

p-value,
FNBMD

index SNP,
LSBMD

p-value,
LSBMD

in GWAS
Catalog*

Info OMIM
number

mongenic phenotype Additional
annotation
information based
on SniPA

HOXC8 12q13.13 rs12300425 1.23E-06 proximity to
HOXC6
(Estrada
et al.)

Cis-eQTL for
HOXC9 and other
genes; Putative
effect on transcript
for HOXC6,
HOXC9 and other
genes

HOXC9 12q13.13 rs11614913 6.981E-08 rs11614913 8.92E-10 proximity to
HOXC6
(Estrada
et al.)

Cis-eQTL for
HOXC6, HOXC8
and other genes;
Putative effect on
regulation for
HOXC10, HOXC6,
HOXC9 and other
genes

The index SNP is defined as the SNP with the lowest association p-value with a given trait. The GWAS Catalog entry refers to results obtained from the

NHGRI GWAS catalog upon entry of the given index SNP. Monogenic phenotypes are retrieved fromOMIM. Empty cells for LSBMD andMNBMDp-values

and SNP identifiers indicate that no SNP in the gene contained significant associations below any of the six murine candidate gene list-wise thresholds.

*LSBMD and FNBMD entries from the GWAS catalog represent summary estimates from the combined discovery and replication step.

SNiPA was used to retrieve cis-eQTL evidence from numerous tissues. Evidence is indicated when any tissue showed indication of an eQTL.

LSBMD = Lumber spine bonemineral density; FNBMD= Femoral neck bonemineral density; OMIM= OnlineMendelian Inheritance in Man database

doi:10.1371/journal.pone.0162466.t002
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by combination with results from a genome-wide genetic screen of a corresponding phenotype
in humans. Our approach is therefore more focused in that it concentrates on specific and anal-
ogous rather than hundreds of phenotypes as well as on genetic manipulations of strong effect
(e.g., complete gene knockouts), which can facilitate the interpretation of findings. In addition,
the focus on one or a few related phenotypes allows for the derivation of a conservativemulti-
ple-testing corrected significance threshold in GenToS, which is difficult to establish in a phe-
nome-wide context, as discussed by the authors [18]. Conversely, the approach by Wang and
colleagues allows for discovering novel cross-phenotype associations and for assessing the
effects of naturally occurring,hypomorphic genetic variants. The latter should theoretically
enable the study of regulatory variants, although the authors chose to study only 12,000 high-

Table 3. Ontology terms and number of genes in eachmurine input gene list.

skeletal phenotypegene lists

name of mouse list ontology term # of genes in list # of genes after filterting

abnormal skeleton physiology MP:0005508 518 498

abnormal skeleton morphology MP:0001533 1292 1247

abnormal skeleton development MP:0002113 379 366

abnormal bonemineralization MP:0002113 134 128

abnormal vertebraemorphology MP:0000137 324 317

abnormal long bonemorphology MP:0003723 184 180

glucosegene lists

name of mouse list ontology term # of genes in list

abnormal circulating glucose level MP:0000188 560 543

abnormal fasted circulating glucose level MP:0013277 60 60

decreased circulating glucose level MP:0005560 324 315

decreased fasted circulating glucose level MP:0013278 21 21

increased circulating glucose level MP:0005559 272 263

increased fasted circulating glucose level MP:0013279 44 44

insulin gene lists

name of mouse list ontology term # of genes in list

abnormal circulating insulin level MP:0001560 385 373

abnormal insulin secretion MP:0003564 147 144

increased insulin secretion MP:0003058 42 39

decreased circulating insulin level MP:0002727 240 234

decreased insulin secretion MP:0003059 110 109

increased circulating insulin level MP:0002079 163 157

blood pressure gene lists

name of mouse list ontology term # of genes in list

increased systemic arterialblood pressure MP:0002842 131 128

increased systemic arterialsystolic blood pressure MP:0006144 67 65

decreased systemic arterialblood pressure MP:0002843 92 87

decreased systemic arterialsystolic blood pressure MP:0006264 39 36

diabetes gene lists

name of mouse list ontology term # of genes in list

hyperglycemia MP:0001559 99 93

abnormal glucose tolerance MP:0005291 406 394

For each list, <5% of genes were filtered, mostly because they were mapping to human gonosomes and gonosomal GWAS summary statistics were not

available. Other reasons for filtering included ambiguous mapping and accounted for <1% of filtered genes for each list.

doi:10.1371/journal.pone.0162466.t003
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impact (missense, nonsense, splice, frameshift, CNVs) out of 5 million discovered genetic vari-
ants. For many of these high-impact variants, no associatedmurine phenotype was observed,
which can be explained by mechanisms such as compensation or by incomplete phenotype
availability. Finally, the use of GWAS in our approach allows for the identification of associated
SNPs that map into introns and gene regulatory regions, whereas the approach by Wang et al
only focused on human genetic variants in the coding portion of the genome (exome chip).
Thus, the evidence generated by the two approaches can be considered complementary.
The comparison of GenToS results across different candidate gene input lists and GWAS

summary statistics datasets allows for several observations: first, the strength of enrichment did
not increase when the murine phenotype was selected as closely as possible to the phenotype
for which human GWAS association statistics were available. This is illustrated by the fact that
the enrichment for genes on the rather general murine candidate gene list for skeleton mor-
phology was stronger than that for the more specificmurine candidate gene list for abnormal
bonemineralization, the phenotype studied in humans. Second, findings across related human
traits were very similar, as evidenced by the comparison of GWAS of femoral neck and lumbar
spine bone mineral density. Third, our observation of significant enrichment was generalizable
to non-skeletal phenotypes, as exemplified by significant enrichment for association signals in
murine candidate genes for abnormal insulin levels and hyperglycemia in the corresponding
human traits.
It is noteworthy that the significance of the observed enrichment varied across the examined

phenotypes/diseases.There are several potential explanations for this observation: firstly, the
genetic architecture of the examined phenotypes can differ. Whereas susceptibility to one dis-
ease may be explained by variants of large effect in relatively few genes, variants of small effect
in several hundreds of genes may contribute to other diseases, requiring better-powered i.e.
larger GWAS for their detection. Secondly, the publicly available data used in this report varied
in sample size, thereby preventing a comparison of phenotypes at a fixed GWAS sample size.
Thirdly, the phenotypic characterization in mice is not equally easy or complete across pheno-
types. For instance, abnormal bone morphology in knockout mice is more easily observed than
phenotypes requiring invasive measurements such as the recording of blood pressure, which
may in addition be subject to biological variation. Finally, for some traits, humans and mice
may be more alike than for others, which can additionally be aggravated by factors such as spe-
cies-specific compensatory mechanisms or interactions with the environment. Regardless of
the differing strength, however, we observed enrichment for a variety of the studied traits, sup-
porting the general applicability of our approach.
Advantages of GenToS include its usefulness in settings where the sample size of subsequent

GWAS cannot be increased easily, such as for rare diseases, or when replication studies may
not be available. Further, the method can be extended to use additional evidence as input:
although we used candidate gene input lists derived frommurine phenotypes in this report, in
principle any other candidate gene list could be used, such as candidate genes implicated by
expression quantitative trait locus studies, candidate genes arising from GWAS carried out in
other model organisms such as in the report of Wang et al. [18], or genes underlyingmono-
genic human diseases. In support of the latter, many of the associations found with GenToS
were already linked to human monogenic diseases in OMIM, supporting a model in which rare
mutations of large effect and common variants of small effect in the same set of genes give rise
to a continuum of a given human phenotype.
Some limitations of our approach warrant discussion: firstly, the performance of the method

is influenced by the completeness of the candidate gene input lists. Although the work of the
Jackson Lab and other groups has resulted in an impressively comprehensive and systematic
resource of geneticallymanipulated and phenotypedmice, animal models were only available
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for 11,500 out of>25,000 murine genes at the time of our study. Because of issues such as early
lethality or structurally complicated genomic regions that contain overlapping genes or are dif-
ficult to manipulate, the resource will likely never become complete. Together with the diffi-
culty of quantifying some murine phenotypes, as discussed above, this may introduce
misclassification that should bias any observed results towards the null. Another limitation is
the inherent restriction to the available data when using posted GWAS summary results. For
example, the conduct of approximate conditional analyses using the GWAS summary results
would have been desirable to identify the presence of independent bonemineral density-associ-
ated SNPs in theHOX gene cluster, becausemurine phenotypes are observed for several of the
genes in this cluster. However, this was not possible because the GEFOS Consortiumdid not
make the estimated effect sizes required for these analyses publicly available. In addition, cur-
rent GWAS are typically restricted to the evaluation of common genetic variants, and are there-
fore likely to miss association signals for rare variants of large effect. Future extensions of
GWAS efforts and the continuing completion of the underlyingmurine MGI database will
therefore likely result in further improvements of our findings.
In conclusion, GenToS is a flexible, freely available and user-friendly tool to incorporate

external information in order to identify trait-associated SNPs in candidate genes that do not
necessarilymeet genome-wide significance in human GWAS studies. It allows for performing
an analysis within minutes on a standard personal computer without any special requirements.

Methods

Generation of candidate gene input lists
Candidate genes, which when impaired cause skeletal phenotypes in mice, were selected by
searching the Mouse Genome Informatics (MGI) resource [15]. MGI is the primary interna-
tional database for laboratorymice. All phenotypes in MGI are categorized based on the Mam-
malian Phenotype (MP) ontology and emerge as a result of different genetic models, including
targeted knockout animals, chemically induced (ENU) and spontaneous mutations. For this
project, murine phenotypes were selected for their biomedical relevance regarding the evaluated
traits for which GWAS data were publicly available, and downloaded from the MP ontology of
MGI (http://www.informatics.jax.org/searches/MP_form.shtml) in March of 2015 for skeletal
candidate gene lists and in June of 2015 for the glucose, insulin, systolic blood pressure and dia-
betes candidate gene lists (Table 3). For genes on each candidate gene list, human orthologs
were selected using the Human-Mouse: Disease Connection [http://www.informatics.jax.org/
humanDisease.html]. Genes with no ortholog in humans were filtered out; no other filtering
criteria were used. The number of genes provided for each candidate gene list in this report rep-
resents the number of genes per list after translation to the human ortholog, the entry point for
the use of GenTos.

Genome-wideassociation study datasets
GenToS was applied to different publicly available datasets of GWAS summary statistics: 1.
TheGEFOS (GEnetic Factors for Osteoporosis) Consortium [19,20] is an international con-
sortium investigating the genetic basis of osteoporosis. The datasets used in this report origi-
nated from the discovery step of two meta-analyses of GWAS summary statistics from
different studies of European and East Asian ancestry that examined associations between gen-
otyped and HapMap imputed single nucleotide polymorphisms and bone mineral density of
the lumber spine (LSBMD; 32,000 individuals) and femoral neck (FNBMD; 33,000 individu-
als). 2. In theMAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium) [25]
Consortium, international investigators investigate genetic influences on glucosemetabolism.

MouseGenetics InformHumanGWAS

PLOSONE | DOI:10.1371/journal.pone.0162466 September 9, 2016 14 / 20

http://www.informatics.jax.org/searches/MP_form.shtml
http://www.informatics.jax.org/humanDisease.html
http://www.informatics.jax.org/humanDisease.html


The datasets used in this report originated from discoverymeta-analyses of fasting insulin
(38,000 individuals) and fasting glucose (46,000 individuals)measured in non-diabetic individ-
uals of European ancestry. 3. TheDIAGRAM (DIAbetes Genetics Replication AndMeta-anal-
ysis) [22] Consortium is a group of researchers aiming to characterize the genetic basis of type
2 diabetes. The datasets used in this report originated from the MAGIC discoverymeta-analy-
sis of type 2 diabetes (12,000 cases and 57,000 controls). 4. In the ICBP (International Consor-
tium for Blood Pressure) [23,24], international investigators aim to understand the genetic
underpinnings of blood pressure. The datasets used in this report originated frommeta-analy-
ses of genetic associations between SNPs and systolic blood pressure (SBP) among 74,000 par-
ticipants of European ancestry. All datasets were downloaded from the respective consortium
websites. Associations with human phenotypes were always evaluated accounting for the num-
ber of independent SNPs across all genes in a given candidate gene input list (see below).
Prior to use with GenToS, GWAS meta-analysis summary datasets were lifted over from

hg18 to hg19 using the UCSC lift-over tool, and were subsequently converted into a sqlite3
database using a custom script.

GenToS
GenToS involves three different steps to identify loci from a given GWAS summary statistics
file with p-values below a computed or user-specified significance threshold. To do so, GenToS
requires the GWAS summary statistics file as well as a file containing a single or several candi-
date genes, an input list. In this report, this candidate gene list contained genes that cause spe-
cific phenotypes in geneticallymanipulated mice (see above).
1. Definition of region
For each gene of a given candidate gene input list, GenToS extracts the starting and ending

genomic coordinates of that gene in order to determine the regions of interest. The positions
are extracted from a pre-computed database containing the starting and ending positions of all
genes. The positions in this database are based on the longest transcript for each gene (see pre-
computed databases, below). Genes with ambiguous starting or ending positions, mostly due
to mapping to different chromosomes, were excluded. In addition, for the GWAS traits evalu-
ated in this report, genes mapping to human gonosomes were excluded because no GWAS
summary statistics were available for X- or Y-chromosomal SNPs. For each remaining gene
from the candidate gene input list, a user-defined flanking region, by default 10kb upstream
and downstream of the gene’s starting and ending position, is added to the extracted positions
to determine the gene region to be used within GenToS (Fig 1A). Thus, the evaluated gene
regions contain exons, introns and proximal regulatory elements such as promoters for each
gene.
2. Calculation of the statistical significance threshold
The default method to define the significance threshold for a given invocation of GenToS is

based on a Bonferroni correction of a type I error probability of 0.05 for the number of inde-
pendent SNPs in a given gene region. GenToS extracts the number of independent SNPs from
a pre-computed database of independent SNPs based on the 1000 Genomes Project phase 1
version 3 (see below). The genetic ancestry of the reference population used to derive the num-
ber of independent SNPs (EUR, AFR, ASN and ALL) can be chosen by an option. For candi-
date gene input lists containing more than one gene, an option can be used that uses the sum of
all independent SNPs across all gene regions to determine the Bonferroni-corrected signifi-
cance threshold, in order to account for the testing of multiple genes. As additional methods to
determine the statistical significance threshold, options for setting a user-defined threshold as
well as a FDR-based threshold are implemented (Fig 1B).
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3. Extraction of significantly associated SNPs from GWAS
As a final step, GenToS searches the specifiedGWAS summary data file for SNPs within the

defined gene regions with association p-values lower than the determined significance thresh-
old. If present, summary statistics for such SNPs are annotated to the gene of interest and writ-
ten to a results file. Consequently, the results file contains all information present in the input
GWAS summary file, along with gene mapping information (Fig 1C).
Subsequent to this three-step procedure an optional yet recommended step is implemented

to evaluate whether there is significant enrichment of the number of detected association sig-
nals for the genes contained in the candidate gene input list compared to the number of
detected associations expected by chance alone. Assessment of enrichment can be carried out
by visual comparison to the null distribution, which is generated based on the number of sig-
nificant genes identified in GWAS data based on the iterative evaluation of randomly drawn
input gene lists (2,000 iterations by default) that contain an equal number of genes as the evalu-
ated candidate gene input. The number of 2,000 iterations was chosen as a compromise
between computational time and sufficient precision. Because each of the 2,000 iterations gen-
erates an input gene list of the same number but different genes (i.e. randomly drawn) the cal-
culation of the number of independent SNPs across each list followed by a Bonferroni
correction procedure is carried out for each draw. This procedure accounts for the different
size and linkage disequilibrium structure of genes within and across lists, and represents a time
consuming yet reliable method to derive a null distribution. Another option to assess enrich-
ment is a similar graphical representation based on a binomial distribution, where the proba-
bility p of a significant association is estimated by the proportion of the total number of genes
with GWAS association signals below the calculated significance threshold for the given candi-
date gene input list among the total number of genes in the gene database and n is the total
number of genes on the candidate gene input list. The probability of observing as many or
more significant genes x is then estimated using a complementary cumulative binomial distri-
bution (enrichment p-value).

PðX � xÞ ¼ 1 �
Xx� 1

k ¼ 0

n

k

 !

pkð1 � pÞn� k

 !

Genes implicated by GenToS were further investigated by annotating them using the Online
Mendelian Inheritance in Man (OMIM) resource as well as the annotation program SNiPA
[29].

Pre-computeddatabases
In order to run GenToS, two databases, one containing the genes and their positions in the
genome and the other containing independent SNPs across the genome were pre-computed.
For the gene database, all RefSeq genes (table refFlat) were downloaded from the UCSC

homepage using build GRCh37/hg19 coordinates [30]. In a subsequent processing step, the
longest transcript for each gene was retained. Only genes of unambiguous mapping and for
which starting and ending position were not mapping onto different chromosomes were
extracted and added to the database for a total of 25,230 entries.
The independent SNPs for the SNP database were pre-computed based on the 1000

Genomes project phase 1 version 3 data using plink (version 1.90b2) [31] (options—indep-
pairwise 50 5 0.2 and—maf 0.01). The computation was carried out chromosome-wise and
added to the SNP database, each chromosome in a different table.
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Algorithm Information
GenToS is a command line based tool implemented in java to run on a Linux based desktop
PC. For a typical analysis, as provided in this paper, a single core processor with 5 GB of mem-
ory is required. An implementation of GenToS including examples can be downloaded at
https://github.com/genepi-freiburg/gentos. Databases used in GenToS are based on SQlite and
produced using a custom perl script also available at github. For the generation of custom data-
bases, database specifications are provided in the GenToS help.

Supporting Information
S1 Fig. QQ-plots of the number of observed significant genes under the null hypothesis
comparing randomdraws of input gene lists and simulated draws based on a binomial
experiment for the number of genes contained on the candidate gene list “skeleton mor-
phology”.
(PDF)

S2 Fig. QQ-plots of the number of observed significant genes under the null hypothesis
comparing randomdraws of input gene lists and simulated draws based on a binomial
experiment for the number of genes contained on the candidate gene list “abnormal bone
mineralization”.
(PDF)

S3 Fig. Enrichment of significant SNP associations in human GWAS of lumbar spine bone
mineral density for a candidate gene input list that contains genes underlying skeletal phe-
notypes in mice.
(PDF)

S4 Fig. Regional association plots of loci associatedwith human bone mineral density phe-
notypes, which were not implicated as causal genes or not associated at genome-wide sig-
nificance in previousGWAS.
(PDF)

S5 Fig. Enrichment of significant SNP associations in human GWAS of type 2 diabetes for
genes causing impaired glucose handling in mice.
(PDF)

S6 Fig. Enrichment of significant SNP associations in humanGWAS of blood pressure phe-
notypes for genes causing corresponding traits in mice.
(PDF)

S7 Fig. Enrichment of significant SNP associations in human GWAS of fasting insulin con-
centrations for genes causing impaired insulin levels in mice.
(PDF)

S8 Fig. Enrichment of significant SNP associations in humanGWAS of fasting glucose con-
centrations for genes causing impaired glucose levels in mice.
(PDF)

S1 Table. Genes identified by GenToS with significant SNP associationswith diabetes, gly-
cemicmeasures and blood pressure measurements.
(PDF)
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